Adaptation of response transients in fly motion vision. I: Experiments
نویسندگان
چکیده
Two types of transient responses have been investigated in fly motion-sensitive neurons in the past: the impulse and the step response. In response to a brief motion pulse, cells show a sudden rise in activity followed by an exponential decay ('impulse response'). In response to the onset of a constant velocity stimulus, cells exhibit transient oscillations before settling to a steady-state value ('step response'). Since the impulse response has been shown to shorten when tested after presentation of an adapting motion stimulus, we investigated whether adaptation also occurs during the step response. We tested this hypothesis by recording extracellularly the response of the H1-cell in the lobula plate of the blowfly Calliphora vicina to gratings of varying pattern contrasts and drift velocity. We found that the transient oscillations of the step response strongly depend on the pattern contrast: at low contrasts, oscillations lasted for several seconds, whereas at high contrasts, they settled within fractions of a second. This suggests that motion adaptation occurs during the initial period of the stimulus presentation and is dependent on the contrast of the motion stimulus. Using identical stimulus parameters (contrast and temporal frequency) for the adapting stimulus and testing the impulse response afterwards, we found that the impulse response and the transient period in the step response shortened in a similar way. We then analyzed the dynamic of the transients oscillations produced by ongoing motion of a square wave pattern in the anti-preferred direction (null direction) of H1. As observed for preferred direction motion, we found that the duration and amplitude of those transients shortened as the contrast and the velocity of the pattern increased, and that the oscillations disappeared when a blank screen instead of a pattern was presented before the onset of motion. Under both stimulus conditions, i.e. grating and blank screen before motion onset, the steady-state response level showed the same dependence on the contrast and temporal frequency of the pattern. When we analyzed the responses of the cell to pattern of various sizes and contrasts moving in the preferred direction of the cell, we found that increments in the size affected the overall amplitude of both the transient oscillations and the steady-state response level, whereas the duration of the oscillations only depended on the local pattern contrast. We also tested the impulse response before and after the presentation of an adapting stimulus presented in either the same or a different location of the visual field. The response shortened only when both the adapting and the test stimuli were presented at the same location. These last experiments demonstrate a strictly local mechanism of adaptation affecting the response transients of both the impulse and the step response.
منابع مشابه
Adaptation of response transients in fly motion vision. II: Model studies
The so-called 'Reichardt detector' can successfully account for many properties of fly motion vision. In its simplest form, the signals derived from neighboring image locations become multiplied after a low-pass filter has delayed one of them. This operation is done twice in a mirror-symmetrical form and the resulting output signals become finally subtracted. As predicted by this model, fly neu...
متن کاملMisecellaneous
ABERRATION Amblyopia in astigmatic preschool children 43: 1081 Astigmatism in infant monkeys reared with cylindrical lenses 43: 2721 Comparison of the time courses of concomitant and nonconcomitant vertical phoria adaptation 43: 567 Disorders of vertical optokinetic nystagmus in patients with ocular misalignment 43: 347 Effects of stimulus size and luminance on oscillopsia in congenital nystagm...
متن کاملAdaptation and the temporal delay filter of fly motion detectors
Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the delay filter comes from 'image step' (or 'velocity impulse') experiments. We note a large discrep...
متن کاملDynamic Adaptation in Fly Motion Vision
Sensory neurons process and convey information about our surroundings, providing the physiological basis for how we interact with the external world. In order to understand neuronal responses we must identify the rules governing how sensory information is encoded. It was proposed more than fifty years ago that neural codes constitute efficient representations of the natural world (Attneave, 195...
متن کاملA Model of Temporal Adaptation in Fly Motion Vision
A computational model is proposed to account for the adaptive properties of the fly motion system. The response properties of motion-sensitive neurons in the fly are modelled using an underdamped adaptive scheme to adjust the time constants of delay filters in an array of Reichardt detectors. It is shown that the increase in both temporal resolution and sensitivity to velocity change observed f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 43 شماره
صفحات -
تاریخ انتشار 2003